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 Introduction to the North American Land Data 
Assimilation System (NLDAS) project and the     
new/upgraded LSMs for the next phase on NLDAS 

 Noah-3.3, Catchment/Fortuna-2.5 (shown here);  
SAC-HTET-3.5.6/SNOW-17, VIC-4.1.2.l (in LIS-7) 

 Simulations with the Land Information System (LIS) 

 Using the LIS software framework for data 
assimilation of remotely-sensed water states 

 Model evaluations and benchmarks using the        
Land Verification Toolkit (LVT) 

 Soil moisture, Surface fluxes, Snow, Streamflow 

 Regression model development and evaluation 
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Presentation Outline 



NLDAS Land Surface Models (LSMs)  

 NLDAS Phase 2 is currently running in operations in 

near-real-time (3.5-day lag) to drive a suite of  LSMs 

(Noah-2.8, Mosaic, SAC/SNOW-17, and VIC-4.0.3). 

 The NLDAS-2 LSMs have been extensively evaluated 

against many observations in papers led by Xia et al. 

 For the next phase of  NLDAS, new and upgraded LSMs 

are being run using the NASA-developed LIS software 

framework, including the use of  data assimilation. 

 1/8th-deg. centered over CONUS (25-53° N; 125-67° W). 

 A 60-year spin-up, then simulations from 1979 – 2012. 

3 
Reference(s): Xia et al. (2012a&b) – NLDAS-2 introduction and streamflow evaluation – JGRa; 

Xia et al. (2013) – soil temperature evaluation – J. Appl. Meteor. Climatol.; & numerous others. 



 LIS is a flexible land-surface modeling and data assimilation 

framework developed with the goal of  integrating satellite- and 

ground-based observed data products with land-surface models. 
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The Land Information System (LIS) 

Reference(s): Kumar et al. (2006) in Environmental Modelling & Software 

                        Peters-Lidard et al. (2007) in Innovations in Systems and Software Engineering 

Land-Surface Models 

Noah-3.3, CLSM-F2.5, 

SAC-HTET-3.5.6/ 

SNOW-17, VIC-4.1.2.l 

1979-present 

NLDAS-2 Forcing 

and Parameters 

 

Data assimilation 

of: soil moisture, 

snow depth/area, 

terrestrial water 

storage (TWS), and 

irrigation intensity 

 

Data Assimilation (EnKF, EnKS) 



The Land Verification Toolkit (LVT) 
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Reference: Kumar et al. (2012): Land surface Verification Toolkit (LVT) – 

A generalized framework for land surface model evaluation.  Geosci. Model. Dev. 

Metric Class Examples 

Accuracy RMSE, Bias, Correlation 

Ensemble Mean, Standard deviation, 

Likelihood 

Uncertainty Uncertainty importance 

Information theory Entropy, Complexity 

Data assimilation Mean, variance, lag correlations 

of  innovation distributions 

Spatial similarity Hausdorff  distance 

Scale 

decomposition 

Discrete wavelet transforms 

 LVT is a NASA-developed open-source software framework 

developed to provide an automated, consolidated environment      

for systematic land surface model evaluation and benchmarking 

 Includes support for a range of  in-situ, remote-sensing, and       

other model and reanalysis products in their native formats 



Benchmarking philosophy 
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1) Compare against available 

independent data – evaluating 

against every component of  the 

water cycle, including budgets, 

balances, and combination   

variables (SWE/P, E/P, Q/P). 

2) Normalize metrics to allow 

integration between different 

observations/components, and     

to ease comparison of  the LSMs. 

3) Investigate if  the LSMs provide 

additional information compared  

to a regression model.  Similar to 

the PALS benchmarking protocol. 



Evaluation of soil moisture fields 

7 

The surface soil moisture (5cm) was evaluated against quality-
controlled soil moisture observations from the USDA SCAN 
(123 sites, 2000-2012) and ARS “CalVal” (4 sites, 2001-
2011) networks.  Data assimilation results can be found in 
Kumar et al. (2014, JHM) – & his talk Tue 11:00am (Paper 3.1). 

Reference(s): Jackson et al. (2012) – ARS – IEEE TRGS; Schaefer et al. – SCAN – J. Atmos. 
Oceanic Technol.; Liu et al. (2011) – soil moisture skill with land DA – JHM 

LSM (version) ARS SCAN 

NLDAS-2 Mosaic 0.758 0.661 +/- 0.025 

NLDAS-2 SAC 0.757 0.701 +/- 0.027 

NLDAS-2 VIC-4.0.3 0.592 0.495 +/- 0.029 

NLDAS-2 Noah-2.8 0.694 0.634 +/- 0.028 

Noah-3.3 OL 0.711 0.614 +/- 0.024 

CLSM-F2.5 OL 0.581 0.493 +/- 0.030 

Anomaly R values 



Evaluation of gridded surface fluxes 
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Gridded monthly surface flux reference products (in blue, the 
mean/range) based on FLUXNET surface observations, on 
MODIS retrievals (MOD16 and UW ET), and on thermal remote 
sensing (ALEXI).  (Left) NLDAS-2 Noah and Noah-3.3; and 
(Right) NLDAS-2 Mosaic and CLSM-F2.5. 

Reference(s): Jung et al. (2009) – FLUXNET – Biogeosci.; Mu et al. (2011) – MOD16 – Rem. 
Sens. Environ.; Tang et al. (2009) – UW ET – JGR; Anderson et al. (2007) – ALEXI – JGRa 



Evaluation of gridded surface fluxes 
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Taylor diagram using 
FLUXNET product as 
reference dataset. 
 

ALEXI, MOD16, and 
UW ET compared to 
FLUXNET are shown. 
 

NLDAS-2 LSMs 
shown with open 
marks. 
 

Noah-3.3/CLSM-F2.5 
OL runs shown with 
closed marks. 
 

Noah-3.3/CLSM-F2.5 
DA runs shown with 
“X” and “+”. 

Reference(s): Jung et al. (2009) – FLUXNET – Biogeosci.; Mu et al. (2011) – MOD16 – Rem. 
Sens. Environ.; Tang et al. (2009) – UW ET – JGR; Anderson et al. (2007) – ALEXI – JGRa 



Evaluation of snow depth 
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Reference(s): Menne et al. (2012) – GHCN – J. Atmos. Oceanic Technol.; Brown and Brasnett 

(2010) – CMC – Environ. Canada; Barrett (2009) – SNODAS – NSIDC, Boulder, CO 

Gridded snow depth analyses (GHCN, CMC, SNODAS) are used 
for snow depth evaluations.  (Left) RMSE & (Right) Bias against 
the CMC daily snow depth analysis.  Additional detail in Kumar 
et al. (GRL, revised version submitted) and Liu et al. (WRR, in 
revision).   And Kumar et al.’s presentation on Tue at 11:00am. 
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Reference(s): Lohmann et al. (2004) – NLDAS router and USGS streamflow obs – JGR; Getirana 

et al. (2012) – HyMAP router – JHM; Mahanama et al. (2012) – Naturalized streamflow – JHM;  

Evaluation of streamflow 

Nash-Sutcliffe Efficiency against 939 USGS small unregulated basins, 2000-2012. 

(Left) Noah-3.3 DA and (Right) CLSM-F2.5 DA runs compared 
to USGS streamflow observations.  The NLDAS-2 LSMs use the 
NLDAS router to route surface runoff and baseflow.  The new 
LSMs used the HyMAP router, which also provides streamflow 
height and includes floodplains.  We’ve also used a large-basin 
naturalized streamflow dataset (Mahanama et al., JHM, 2012). 



Benchmarking system 
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LSM (version) vs. FLUXNET RMSE (W/m2) S (with σobs = 23.7 W/m2) 

NLDAS-2 Mosaic 20.1 0.152 

NLDAS-2 VIC-4.0.3 14.4 0.392 

NLDAS-2 Noah-2.8 12.3 0.481 

Noah-3.3 OL 18.0 0.241 

CLSM-F2.5 OL 12.9 0.456 

 David Lawrence (NCAR) et al. have proposed a benchmarking 

system for land models as part of  The International Land Model 

Benchmarking (ILAMB) project.  One aspect of  this system is the 

development of  a “score” system using the standard. dev. of  the 

observations to normalize different error metrics.  One example: 

S = 1 – (Global avg. RMSE / σobservations) 

S varies between 0 and 1; higher values show lower overall RMSE 



 This type of  “score” system can be produced for other metrics 

(unbiased RMSE, Mean Absolute Error, etc.) all available in LVT. 

 Lawrence has also proposed adding weights to this score system, 

subjectively determined to represent confidence/representativeness 

we have in a particular observational dataset as well as importance 

of  each water budget term. 

 As an example, here we use an average weight each of  0.25 for each 

latent heat flux product to produce a single S “score” for each LSM. 

Benchmarking system 
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LSM (version) ALEXI FLUXNET MOD16 UW ET Average 

NLDAS-2 Mosaic 0.191 0.152 0.000 0.253 0.149 

NLDAS-2 VIC-4.0.3 0.097 0.392 0.090 0.369 0.237 

NLDAS-2 Noah-2.8 0.124 0.481 0.161 0.375 0.285 

Noah-3.3 OL 0.318 0.241 0.114 0.331 0.251 

CLSM-F2.5 OL 0.235 0.456 0.090 0.531 0.328 
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Model inputs vs. Model physics 

Information from: Model Inputs vs. Model Physics 

“for the most part, the models under-utilise the 
information available to them” - (Abramowitz, 2005; GRL) 

 How to measure information use efficiency? 

 Abramowitz (2005; 2012) showed that regressions on the 
boundary conditions often out-perform physics-based LSMs.  
Implies that models do not use all available information. 

 Gong et al. (2013) measured information lost by the model. 

 Nearing et al. (WRR, “The Amount and Quality of  Information 
in a Model”, accepted) measured information provided by model 
physics. 

 Use a Leave One Out (LOO) regression model 
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Benchmarking Results 
Standard benchmarking approach           

(e.g., Abramowitz, 2005) using a 

split data record at each site  

• 15-Day lagged forcing as inputs 

• Single kernel density function                

(a Gaussian process regression)     

trained on ~100 data points at 

all sites 

• 101 SCAN sites with sufficient 

training data 

Explanation of  Results 

• First columns measure (Shannon) information missing from Forcings 

• Second column measures information missing from Parameters 

• Model columns measure info gain (or loss) from model physics 



Summary/Conclusions 

 LSMs from NLDAS Phase 2 and from the next phase of  

NLDAS are being evaluated against observations using LVT, 

including soil moisture, surface fluxes, snow, and streamflow. 

 Benchmarking system is being developed to evaluate changes 

from new LSMs and using data assimilation, normalized and 

weight-averaged between observational datasets and water 

budget terms. 

 Regression model analysis was performed to show the info  

lost (or gained) from the model physics and parameters. 

 Improving model parameters in the new LSMs for NLDAS 

may provide better simulated results for the Open Loop and 

for using data assimilation. 
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Future steps for NLDAS 

 Evaluate the VIC-4.1.2.l and SAC-HTET-3.5.6/SNOW-17       

Open Loop simulations and add/test the effects of  DA. 

 Model parameter calibration through the benchmarking system. 

 Further evaluations (other variables) with the regression model. 

 Drought uncertainty analysis using LIS-OPT/UE subsystem. 

 Probabilistic modeling will be performed towards reducing the 

uncertainty from the LSMs with respect to independent validation 

data, instead of  simply showing improvements in error metrics 

from a single deterministic realization. 

 Add latest versions of  Noah-MP and CLM LSMs into LIS 

(groundwater, etc.) and run and test over the NLDAS domain. 

 Transition the latest version of  NLDAS using LIS and DA to 

NOAA/EMC for near-real-time operational data production. 
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NLDAS & LIS websites 

 NLDAS at NASA: 

  http://ldas.gsfc.nasa.gov/nldas/ 

 NLDAS datasets at the NASA GES DISC: 

    http://disc.gsfc.nasa.gov/hydrology/ 

 NLDAS at NOAA/NCEP/EMC: 

   http://www.emc.ncep.noaa.gov/mmb/nldas/ 

 LIS website at NASA: 

    http://lis.gsfc.nasa.gov/ 

 LVT website at NASA: 

    http://lis.gsfc.nasa.gov/LVT/ 
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Additional slides 
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NLDAS Land Surface Models (LSMs)  

NLDAS-2 Major LSM changes Next phase of  NLDAS References 

Noah-2.8 • Common code by 

NCAR/NCEP 

• Warm season updates 

• Snow physics upgrade 

Noah-3.3 Chen et al. (1996, 

JGR); Ek et al. (2003, 

JGR); Wei et al., 2012, 

HP); Livneh et al., 

2010, J. Hydromet.) 

Mosaic • Topographic catchments 

instead of  1-D soil 

moisture layers 

• 3 soil moisture regions: 

saturated, sub-saturated,  

and wilting 

Catchment/     

Fortuna-2.5 

(CLSM-F2.5) 

Koster et al. (2000, 

JGR); Reichle et al. 

(2011, J. Climate); 

same version of  code 

as for MERRA-Land 

VIC-4.0.3 • Canopy energy balance 

• Snowpack improvements 
VIC-4.1.2.l Liang et al. (1994, 

JGR);  Gao et al.  

(2010, book chapter) 

SAC/      

SNOW-17 

• Distinct soil layers for   

soil moisture/temps (HT) 

• Includes the Noah LSM’s 

evapotranspiration physics 

(ET) 

SAC-HTET- 

3.5.6/   

SNOW-17 

Burnash et al., (1973); 

Anderson (1973); 

Koren et al. (2007, 

2010, NOAA Tech 

Memos) 
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Multi-variate Data Assimilation 

Water state Platform/Product(s) Period Notes 

Soil 

Moisture 

• ECV (Essential Climate 

Variable), merged product 

from multiple platforms 

• AMSR-E LPRM product 

• ASCAT (SMOPS) product 

ECV (1979-2002) 

AMSR-E (2002-2011) 

ASCAT (2007- ) 

Microwave soil moisture not assimilated 

in locations/times with heavy vegetation, 

precipitation, snow cover, frozen ground, 

RFI.  Observations are scaled to the 

LSM’s climatology using CDF matching. 

Snow • Snow depth from SMMR, 

SSM/I, AMSE-E 

• Snow-covered fraction 

(SCF) from MODIS and 

IMS 

 

SMMR (1979-1987) 

SSM/I (1987-2002) 

AMSR-E (2002-2011) 

 

MODIS (2000- ) 

IMS (1997- ) 

Passive microwave snow depth bias-

corrected using the Cressman method 

using in-situ observations from the 

Global Historical Climate Network 

(GHCN).  Visible SCF data used as an 

additional constraint during data 

assimilation. 

TWS • Terrestrial water storage 

(TWS) anomalies from 

GRACE 

GRACE (2002- ) Ensemble Kalman Smoother (EnKS) 

used only with the CLSM-F2.5 LSM. 

Irrigation 

intensity 

• Irrigated areas 

determined from a 

MODIS climatology 

Demand-driven 

during 1979-2012 

Demand-driven “sprinker” scheme  

based on Ozdogan et al., JHM, 2010.  

Triggered when root zone soil moisture 

falls below a specific threshold.  

Irrigation requirement computed as an 

amount of  water and added to the 

precipitation forcing. 
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Regression analysis 

With observations at “n” Sites, Site “i” is left out of the training of the regression model, which 
uses the inputs and observations at each other site.  After training, the inputs and observations 
at Site “i” are used to determine information obtained from the observations, the regression 
model, and the physics of the land-surface model(s).  This is repeated for all “n” Sites. 
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Regression analysis 

The X-axis – I(X;Y) – is Shannon's mutual information between X and Y; it is equal to the 
amount of information that Y gives about X and vice versa.  Mutual information measures 
predictability.  If the Info obtained from the LSM is Higher than from the regression model, 
then the physics from the LSM has provided additional information.  If the Info obtained 
from the LSM is Lower than from the regression model, then the physics from the LSM has 
lost information through model error. 



Discussion 

 The previous analyses and description of  tools are towards the 

development of  a systematic approach to LSM benchmarking. 

 LSM parameters should be distributed and optimized for the 

validation datasets that we most trust (and ideally, co-located). 

 The benchmarking environment should be automated and consider 

all aspects of  the water and energy balances (a particular LSM may 

improve its simulation of  snow but degrade the fluxes). 

 The end goal of  this work is to identify and correct model and 

parameter deficiencies towards improved model fluxes/states. 
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